saya tyas dari smk n 1 jogonalan dari jurusan multimedia
-assalamualaikum wr.wb-
selamat sore semuanya bertemu lagi dengan blog saya yang sangat sederhana ini. nah kali ini saya akan membagikan sebuah postingan semoga bisah menambah ilmu kita semua dengan pokok bahasan yaitu "semiotika"
--------------------------------------------------------
1. PENGERTIAN
Jaringan komputer (jaringan) adalah jaringan telekomunikasi yang memungkinkan antar komputer untuk saling bertukar data. Tujuan dari jaringan komputer adalah[1] agar dapat mencapai tujuannya, setiap bagian dari jaringan komputer dapat meminta dan memberikan layanan (service).[1] Pihak yang meminta/menerima layanan disebut klien (client) dan yang memberikan/mengirim layanan disebut peladen (server).[1] Desain ini disebut dengan sistem client-server, dan digunakan pada hampir seluruh aplikasi jaringan komputer.[1]
Dua buah komputer yang masing-masing memiliki sebuah kartu jaringan, kemudian dihubungkan melalui kabel maupun nirkabel sebagai medium transmisi data, dan terdapat perangkat lunak sistem operasi jaringan akan membentuk sebuah jaringan komputer yang sederhana.[2]: Apabila ingin membuat jaringan komputer yang lebih luas lagi jangkauannya, maka diperlukan peralatan tambahan seperti Hub, Bridge, Switch, Router, Gateway sebagai peralatan interkoneksinya.[2]
2. LATAR BELAKANG
Kemajuan
teknologi yang semakin pesat yang ditandai dengan munculnya berbagai jenis
piranti keras/hardware dan piranti lunak/software juga berdampak pada kemajuan
dalam dunia informasi ditandai dengan penyampaian informasi dari satu tempat ke
tempat lainya yang tidak terbatas oleh jarak dan waktu. Kata “jaringan komputer” mungkin
sudah tidak asing lagi bagi telinga kita, mengingat hampir setiap hari kita
melibatkan jaringan komputer dalam pekerjaan kita.
Jaringan
komputer adalah sebuah sistem yang terdiri dari dua atau lebih komputer yang
saling terhubung satu sama lain melalui media transmisi atau media komunikasi
sehingga dapat saling berbagi data, aplikasi maupun berbagi perangkat keras
komputer.
Istilah
jaringan komputer sendiri juga dapat diartikan sebagai kumpulan sejumlah
terminal komunikasi yang terdiri dari dua komputer atau lebih yang saling
terhubung. Tujuan dibangunnya jaringan komputer adalah agar informasi/ data
yang dibawa pengirim (transmitter) dapat sampai kepada penerima (receiver) dengan
tepat dan akurat.
Dalam
tulisan ini akan dibahas mengenai tipe sebuah jaringan komputer. Disamping itu
juga akan diulas dasar topologi jaringan termasuk kelebihan dan
kekurangannya.
Dengan mengetahui hal tersebut maka pengguna dapat memilih topologi jaringan
yang sesuai kebutuhan. Untuk memperjelas ulasan penulis mengambil contoh dua
unit kerja/Unit3. TUJUAN
agar pembaca dapat lebih mengerti tengang apa itu jaringan dan fungsi dari jaringan itu sendiri.4. ALAT DAN BAHAN
a. laptop/komputer
b. jaringan internet
c. materi yang akan di pelajari
5. JANGKA WAKTU PELAKSANAAN
tergantung drai banyak sedikitnya materi yang akan di pelajari dan daya pemanhaman kita terhadap materi.
6. PEMBAHASAN
1. PENGERTIAN
Jaringan komputer (jaringan) adalah jaringan telekomunikasi yang memungkinkan antar komputer untuk saling bertukar data. Tujuan dari jaringan komputer adalah[1] agar dapat mencapai tujuannya, setiap bagian dari jaringan komputer dapat meminta dan memberikan layanan (service).[1] Pihak yang meminta/menerima layanan disebut klien (client) dan yang memberikan/mengirim layanan disebut peladen (server).[1] Desain ini disebut dengan sistem client-server, dan digunakan pada hampir seluruh aplikasi jaringan komputer.[1]
Dua buah komputer yang masing-masing memiliki sebuah kartu jaringan, kemudian dihubungkan melalui kabel maupun nirkabel sebagai medium transmisi data, dan terdapat perangkat lunak sistem operasi jaringan akan membentuk sebuah jaringan komputer yang sederhana.[2]: Apabila ingin membuat jaringan komputer yang lebih luas lagi jangkauannya, maka diperlukan peralatan tambahan seperti Hub, Bridge, Switch, Router, Gateway sebagai peralatan interkoneksinya.[2]
2. SEJARAH
Sejarah jaringan komputer bermula dari lahirnya konsep jaringan komputer pada tahun 1940-an di Amerika yang digagas oleh sebuah proyek pengembangan komputer MODEL I di laboratorium Bell dan group riset Universitas Harvard yang dipimpin profesor Howard Aiken.[3] Pada mulanya proyek tersebut hanyalah ingin memanfaatkan sebuah perangkat komputer yang harus dipakai bersama.[3] Untuk mengerjakan beberapa proses tanpa banyak membuang waktu kosong dibuatlah proses beruntun (Batch Processing), sehingga beberapa program bisa dijalankan dalam sebuah komputer dengan kaidah antrian.[3]Kemudian pada tahun 1950-an ketika jenis komputer mulai berkembang sampai terciptanya super komputer, maka sebuah komputer harus melayani beberapa tempat yang tersedia (terminal), untuk itu ditemukan konsep distribusi proses berdasarkan waktu yang dikenal dengan nama TSS (Time Sharing System).[4] Maka untuk pertama kalinya bentuk jaringan (network) komputer diaplikasikan.[4] Pada sistem TSS beberapa terminal terhubung secara seri ke sebuah komputer atau perangkat lainnya yang terhubung dalam suatu jaringan (host) komputer.[4] Dalam proses TSS mulai terlihat perpaduan teknologi komputer dan teknologi telekomunikasi yang pada awalnya berkembang sendiri-sendiri.[4] Departemen Pertahanan Amerika, U.S. Defense Advanced Research Projects Agency (DARPA) memutuskan untuk mengadakan riset yang bertujuan untuk menghubungkan sejumlah komputer sehingga membentuk jaringan organik pada tahun 1969.[5] Program riset ini dikenal dengan nama ARPANET.[5] Pada tahun 1970, sudah lebih dari 10 komputer yang berhasil dihubungkan satu sama lain sehingga mereka bisa saling berkomunikasi dan membentuk sebuah jaringan.[5] Dan pada tahun 1970 itu juga setelah beban pekerjaan bertambah banyak dan harga perangkat komputer besar mulai terasa sangat mahal, maka mulailah digunakan konsep proses distribusi (Distributed Processing).[3] Dalam proses ini beberapa host komputer mengerjakan sebuah pekerjaan besar secara paralel untuk melayani beberapa terminal yang tersambung secara seri disetiap host komputer.[3] Dalam proses distribusi sudah mutlak diperlukan perpaduan yang mendalam antara teknologi komputer dan telekomunikasi, karena selain proses yang harus didistribusikan, semua host komputer wajib melayani terminal-terminalnya dalam satu perintah dari komputer pusat.[3]
Seiring dengan bertambahnya komputer yang membentuk jaringan, dibutuhkan sebuah protokol resmi yang dapat diakui dan diterima oleh semua jaringan.[6] Untuk itu, pada tahun 1982 dibentuk sebuah Transmission Control Protocol (TCP) atau lebih dikenal dengan sebutan Internet Protocol (IP) yang kita kenal hingga saat ini.[6] Sementara itu, di Eropa muncul sebuah jaringan serupa yang dikenal dengan Europe Network (EUNET) yang meliputi wilayah Belanda, Inggris, Denmark, dan Swedia.[6] Jaringan EUNET ini menyediakan jasa surat elektronik dan newsgroup USENET.[6]
Untuk menyeragamkan alamat di jaringan komputer yang ada, maka pada tahun 1984 diperkenalkan Sistem Penamaan Domain atau domain name system, yang kini kita kenal dengan DNS.[5] Komputer yang tersambung dengan jaringan yang ada sudah melebihi 1000 komputer lebih.[5] Pada 1987, jumlah komputer yang tersambung ke jaringan melonjak 10 kali lipat menjadi 10000 lebih.[5]
Jaringan komputer terus berkembang pada tahun 1988, Jarkko Oikarinen seorang berkebangsaan Finlandia menemukan sekaligus memperkenalkan Internet Relay Chat atau lebih dikenal dengan IRC yang memungkinkan dua orang atau lebih pengguna komputer dapat berinteraksi secara langsung dengan pengiriman pesan (Chatting ).[6] Akibatnya, setahun kemudian jumlah komputer yang saling berhubungan melonjak 10 kali lipat.[6] tak kurang dari 100000 komputer membentuk sebuah jaringan.[6] Pertengahan tahun 1990 merupakan tahun yang paling bersejarah, ketika Tim Berners Lee merancang sebuah programe penyunting dan penjelajah yang dapat menjelajai komputer yang satu dengan yang lainnya dengan membentuk jaringan.[6] Programe inilah yang disebut Waring Wera Wanua atau World Wide Web.[6]
Komputer yang saling tersambung membentuk jaringan sudah melampaui sejuta komputer pada tahun 1992.[5] Dan pada tahun yang sama muncul istilah surfing (menjelajah).[5] Dan pada tahun 1994, situs-situs di internet telah tumbuh menjadi 3000 alamat halaman, dan untuk pertama kalinya berbelanja melalui internet atau virtual-shopping atau e-retail muncul di situs.[5] Pada tahun yang sama Yahoo! didirikan, yang juga sekaligus tahun kelahiran Netscape Navigator 1.0.[5]
3. JENIS - JENIS JARINGAN
1. TCP (Transmission Control Protocol)
Transmission Control Protocol atau yang sering kali disingkat menjadi TCP berfungsi untuk melakukan transmisi data per-segmen (paket data dipecah dalam jumlah yang sesuai dengan besaran paket kemudian dikirim satu persatu hingga selesai). Agar pengiriman data sampai dengan baik, maka pada setiap packet pengiriman, TCP akan menyertakan nomor seri (sequence number). Adapun komputer tujuan yang menerima paket tersebut harus mengirim balik sebuah sinyal acknowledge dalam satu periode yang ditentukan. Bila pada waktunya komputer tujuan belum juga memberikan acknowledge, maka terjadi time out yang menandakan pengiriman packet gagal dan harus diulang kembali. Model protokol TCP disebut sebagai connection oriented protocol.
2. IP (Internet Protocol)
IP (Internet Protocol) atau alamat IP dapat disebut dengan kode pengenal komputer pada jaringan merupakan komponen vital pada internet, karena tanpa alamat IP seseorang tidak akan dapat terhubung ke internet. Penggunaan alamat IP dikoordinasi oleh lembaga sentral internet yang dikenal dengan IANA, salah satunya adalah NIC (Network Information Center).
B. Definisi IPv6
IP versi 6 (IPv6) adalah protokol internet versi baru yang didesain sebagai pengganti dari Internet protocol versi 4 (IPv4) yang didefinisikan dalam RFC 791. IPv6 yang memiliki kapasitas alamat (address) raksasa (128 bit), mendukung penyusunan alamat secara terstruktur, yang memungkinkan Internet terus berkembang dan menyediakan kemampuan routing baru yang tidak terdapat pada IPv4. IPv6 memiliki tipe alamat anycast yang dapat digunakan untuk pemilihan route secara efisien. Selain itu IPv6 juga dilengkapi oleh mekanisme penggunaan alamat secara local yang memungkinkan terwujudnya instalasi secara Plug&Play, serta menyediakan platform bagi cara baru pemakaian Internet, seperti dukungan terhadap aliran datasecara real-time, pemilihan provider, mobilitas host, end-to-end security, maupun konfigurasi otomatis.
C. Keunggulan IPv6
Otomatisasi berbagai setting / Stateless-less auto-configuration (plug&play). Alamat pada IPv4 pada dasarnya statis terhadap host. Biasanya diberikan secara berurut pada host. Memang saat ini hal di atas bisa dilakukan secara otomatis dengan menggunakan DHCP (Dynamic Host Configuration Protocol), tetapi hal tersebut pada IPv4 merupakan fungsi tambahan saja, sebaliknya pada IPv6 fungsi untuk men-setting secara otomatis disediakan secara standar dan merupakan default-nya. Pada setting otomatis ini terdapat dua cara tergantung dari penggunaan address, yaitu setting otomatis stateless dan statefull.
1. Setting Otomatis Statefull
Cara pengelolaan secara ketat dalam hal range IP address yang diberikan pada host dengan menyediakan server untuk pengelolaan keadaan IP address, dimana cara ini hampir mirip dengan cara DHCP pada IPv4. Pada saat melakukan setting secara otomatis, informasi yang dibutuhkan antara router,server dan host adalah ICMP (Internet Control Message Protocol) yang telah diperluas. Pada ICMP dalam IPv6 ini, termasuk pula IGMP (Internet Group management Protocol) yang dipakai pada multicast pada IPv4.
2. Setting Otomatis Stateless
Pada cara ini tidak perlu menyediakan server untuk pengelolaan dan pembagian IP address, hanya men-setting router saja dimana host yang telah tersambung di jaringan dari router yang ada pada jaringan tersebut memperoleh prefix dari address dari jaringan tersebut. Kemudian host menambah pattern bit yang diperoleh dari informasi yang unik terhadap host, lalu membuat IP address sepanjang 128 bit dan menjadikannya sebagai IP address dari host tersebut. Pada informasi unik bagi host ini, digunakan antara lain address MAC dari network interface. Pada setting otomatis stateless ini dibalik kemudahan pengelolaan, pada Ethernet atau FDDI karena perlu memberikan minimal 48 bit (sebesar address MAC) terhadap satu jaringan, memiliki kelemahan yaitu efisiensi penggunaan alamat yang buruk.
D. Address IPv6
1. Unicast (One-to-one)
Digunakan untuk komunikasi satu lawan satu, dengan menunjuk satu host.
Pada alamat unicast ini terdiri dari :
1. Global, alamat yang digunakan misalnya untuk alamat provider atau alamat geografis.
2. Link Local Address adalah alamat yang dipakai di dalam satu link saja. Yang dimaksud link di sini adalah jaringan lokal yang saling tersambung pada satu level. Alamat ini dibuat secara otomatis oleh host yang belum mendapat alamat global, terdiri dari 10+n bit prefix yang dimulai dengan “FE80” dan field sepanjang 118-n bit yang menunjukkan nomor host. Link Local Address digunakan pada pemberian alamat IP secara otomatis.
3. Site-local, alamat yang setara dengan private address, yang dipakai terbatas di dalam site saja. Alamat ini dapat diberikan bebas, asal unik di dalam site tersebut, namun tidak bisa mengirimkan paket dengan tujuan alamat ini di luar dari site tersebut.
4. Kompatibel.
2. Multicast (One-to-many)
Yang digunakan untuk komunikasi satu lawan banyak dengan menunjuk host dari group. Multicast address ini pada IPv4 didefinisikan sebagai kelas D, sedangkan pada IPv6 ruang yang 8 bit pertamanya di mulai dengan “FF” disediakan untuk multicast address. Ruang ini kemudian dibagi-bagi lagi untuk menentukan range berlakunya. Kemudian blockcast address pada IPv4 yang alamat bagian hostnya didefinisikan sebagai “1”, pada IPv6 sudah termasuk di dalam multicast address ini. Blockcast address untuk komunikasi dalam segmen yang sama yang dipisahkan oleh gateway, sama halnya dengan multicast address 10 dipilih berdasarkan range tujuan.
3. Anycast
Yang menunjuk host dari group, tetapi paket yang dikirim hanya pada satu host saja. Pada alamat jenis ini, sebuah alamat diberikan pada beberapa host, untuk mendefinisikan kumpulan node. Jika ada paket yang dikirim ke alamat ini, maka router akan mengirim paket tersebut ke host terdekat yang memiliki Anycast address sama. Dengan kata lain, pemilik paket menyerahkan pada router tujuan yang paling “cocok” bagi pengiriman paket tersebut. Pemakaian Anycast ini misalnya terhadap beberapa server yang memberikan layanan seperti DNS (Domain Name Server). Dengan memberikan Anycast alamat Address sama pada server-server tersebut, jika ada paket yang dikirim oleh client ke alamat ini, maka router akan memilih server yang terdekat dan mengirimkan paket tersebut ke server tersebut. Sehingga, beban terhadap server dapat terdistribusi secara merata. Bagi anycast ini tidak disediakan ruang khusus. Jika terhadap beberapa host diberikan sebuah alamat yang sama, maka alamat tersebut dianggap sebagai Anycast Address.
E. Penulisan Alamat pada IPv6
Model x:x:x:x:x:x:x:x dimana ‘x‘ berupa nilai hexadesimal dari 16 bit porsi alamat, karena ada 8 buah ‘x‘ maka jumlah totalnya ada 16 * 8 = 128 bit. Contohnya adalah :
FEDC : BA98 : 7654 : 3210 : FEDC : BA98 : 7654 : 3210
Jika format pengalamatan IPv6 mengandung kumpulan group 16 bit alamat, yaitu
‘x‘, yang bernilai 0 maka dapat direpresentasikan sebagai ‘::’. Contohnya adalah :
FEDC : 0 : 0 : 0 : 0 : 0 : 7654 : 3210
dapat direpresentasikan sebagai
FEDC :: 7654 : 3210
Dan 0:0:0:0:0:0:0:1 dapat direpresentasikan sebagai ::1
Model x:x:x:x:x:x:d.d.d.d dimana ‘d.d.d.d’ adalah alamat IPv4 semacam
167.205.25.6 yang digunakan untuk automatic tunnelling. Contohnya adalah :
0:0:0:0:0:0:167.205.25.6 atau ::167.205.25.6
0:0:0:0:0:ffff:167.205.25.7 atau :ffff:167.205.25.7
Jadi jika sekarang mengakses alamat di internet misalnya 167.205.25.6 pada saatnya nanti format tersebut akan digantikan menjadi semacam ::ba67:080:18. Sebagaimana IPv4, IPv6 menggunakan bitmask untuk keperluan subnetting yang direpresentasikan sama seperti representasi prefix-length pada teknik CIDR yang digunakan pada IPv4, misalnya :
3ffe:10:0:0:0:fe56:0:0/60
menunjukkan bahwa 60 bit awal merupakan bagian network bit. Jika pada IPv4 mengenal pembagian kelas IP menjadi kelas A, B, dan C maka pada IPv6 pun dilakukan pembagian kelas berdasarkan fomat prefix (FP) yaitu format bit awal alamat. Misalnya :
3ffe:10:0:0:0:fe56:0:0/60 maka jika diperhatikan 4 bit awal yaitu hexa ‘3’ didapatkan format prefixnya untuk 4 bit awal adalah 0011 (yaitu nilai ‘3’ hexa dalam biner).
F. Kelas IPv6
Ada beberapa kelas IPv6 yang penting yaitu :
1. Aggregatable Global Unicast Addresses : termasuk di dalamnya adalah alamat
IPv6 dengan bit awal 001.
2. Link-Local Unicast Addresses : termasuk di dalamnya adalah alamat IPv6
dengan bit awal 1111 1110 10.
3. Site-Local Unicast Addresses : termasuk di dalamnya adalah alamat IPv6
dengan bit awal 1111 1110 11.
4. Multicast Addresses : termasuk di dalamnya adalah alamat IPv6 dengan bit
awal 1111 1111.
Pada protokol IPv4 dikenal alamat-alamat khusus semacam 127.0.0.1 yang
mengacu ke localhost, alamat ini direpresentasikan sebagai 0:0:0:0:0:0:0:1
atau ::1 dalam protokol IPv6. Selain itu pada IPv6 dikenal alamat khusus lain
yaitu 0:0:0:0:0:0:0:0 yang dikenal sebagai unspecified address yang tidak boleh
diberikan sebagai pengenal pada suatu interface. Secara garis besar format unicast
address adalah sebagai berikut :
Interface ID digunakan sebagai pengenal unik masing-masing host dalam satu subnet. Dalam penggunaannya umumnya interface ID berjumlah 64 bits dengan format IEEE EUI-64. Jika digunakan media ethernet yang memiliki 48 bit MAC address maka pembentukan interface ID dalam format IEEE EUI-64
adalah sebagai berikut :
Misalkan MAC address-nya adalah 00:40:F4:C0:97:57
1. Tambahkan 2 byte yaitu 0xFFFE di bagian tengah alamat tersebut
sehingga menjadi 00:40:F4:FF:FE:C0:97:57
2. Komplemenkan (ganti bit 1 ke 0 dan sebaliknya) bit kedua dari belakang pada byte awal alamat yang terbentuk, sehingga yang dikomplemenkan adalah ‘00’ (dalam hexadesimal) atau ‘00000000’ (dalam biner) menjadi ‘00000010’ atau ‘02’ dalam hexadesimal.
3. Didapatkan interface ID dalam format IEEE EUI-64 adalah 0240:F4FF:FEC0:9757.
Di bawah ini adalah tabel perbandingan antara IPv4 dan IPv6 :
G. Struktur Paket Data pada IPv6
Dalam men-design header paket ini, diupayakan agar cost atau nilai pemrosesan header menjadi kecil untuk mendukung komunikasi data yang lebih real time. Misalnya, alamat awal dan akhir menjadi dibutuhkan pada setiap paket. Sedangkan pada header IPv4 ketika paket dipecah-pecah, ada field untuk menyimpan urutan antar paket. Namun field tersebut tidak terpakai ketika paket tidak dipecah-pecah. Header pada Ipv6 terdiri dari dua jenis, yang pertama, yaitu field yang dibutuhkan oleh setiap paket disebut header dasar, sedangkan yang kedua yaitu field yang tidak selalu diperlukan pada packet disebut header ekstensi, dan header ini didifinisikan terpisah dari header dasar. Header dasar selalu ada pada setiap packet, sedangkan header tambahan hanya jika diperlukan diselipkan antara header dasar dengan data. Header tambahan, saat ini didefinisikan selain bagi penggunaan ketika packet dipecah, juga didefinisikan bagi fungsi security dan lain-lain. Header tambahan ini, diletakkan setelah header dasar, jika dibutuhkan beberapa header, maka header ini akan disambungkan berantai dimulai dari header dasar dan berakhir pada data. Router hanya perlu memproses header yang terkecil yang diperlukan saja, sehingga waktu pemrosesan menjadi lebih cepat. Hasil dari perbaikan ini, meskipun ukuran header dasar membesar dari 20 bytes menjadi 40 bytes namun jumlah field berkurang dari 12 menjadi 8 buah saja.
H. Perubahan dari IPv4 ke IPv6
Perubahan dari IPv4 ke IPv6 pada dasarnya terjadi karena beberapa
hal yang dikelompokkan dalam kategori berikut :
1. Kapasitas Perluasan Alamat
IPv6 meningkatkan ukuran dan jumlah alamat yang mampu didukung oleh IPv4 dari 32 bit menjadi 128bit. Peningkatan kapasitas alamat ini digunakan untuk mendukung peningkatan hirarki atau kelompok pengalamatan, peningkatan jumlah atau kapasitas alamat yang dapat dialokasikan dan diberikan pada node dan mempermudah konfigurasi alamat pada node sehingga dapat dilakukan secara
otomatis. Peningkatan skalabilitas juga dilakukan pada routing multicast dengan meningkatkan cakupan dan jumlah pada alamat multicast. IPv6 ini selain meningkatkan jumlah kapasitas alamat yang dapat dialokasikan pada node juga mengenalkan jenis atau tipe alamat baru, yaitu alamat anycast. Tipe alamat anycast ini didefinisikan dan digunakan untuk mengirimkan paket ke salah satu dari kumpulan node.
2. Penyederhanaan Format Header
Beberapa kolom pada header IPv4 telah dihilangkan atau dapat dibuat sebagai header pilihan. Hal ini digunakan untuk mengurangi biaya pemrosesan hal-hal yang umum pada penanganan paket IPv6 dan membatasi biaya bandwidth pada header IPv6. Dengan demikian, pemerosesan header pada paket IPv6 dapat dilakukan secara efisien.
3. Option dan Extension Header
Perubahan yang terjadi pada header-header IP yaitu dengan adanya pengkodean header Options (pilihan) pada IP dimasukkan agar lebih efisien dalam penerusan paket (packet forwarding), agar tidak terlalu ketat dalam pembatasan panjang header pilihan yang terdapat dalam paket IPv6 dan sangat fleksibel/dimungkinkan untuk mengenalkan header pilihan baru pada masa akan datang.
4. Kemampuan Pelabelan Aliran Paket
Kemampuan atau fitur baru ditambahkan pada IPv6 ini adalah memungkinkan pelabelan paket atau pengklasifikasikan paket yang meminta penanganan khusus, seperti kualitas mutu layanan tertentu (QoS) atau real-time.
5. Autentifikasi dan Kemampuan Privasi
Kemampuan tambahan untuk mendukung autentifikasi, integritas data dan data penting juga dispesifikasikan dalam alamat IPv6. Perubahan terbesar pada IPv6 adalah perluasan IP address dari 32 bit pada IPv4 menjadi 128 bit.128 bit ini adalah ruang address yang kontinyu dengan menghilangkan konsep kelas. Selain itu juga dilakukan perubahan pada cara penulisan IP address. Jika pada IPv4 32 bit dibagi menjadi masing-masing 8 bit yang dipisah kan dengan “.” dan di tuliskan dengan angka desimal, maka pada IPv6, 128 bit tersebut dipisahkan menjadi masing-masing 16 bit yang tiap bagian dipisahkan dengan “:”dan dituliskan dengan hexadesimal. Selain itu diperkenalkan pula struktur bertingkat agar pengelolaan routing menjadi mudah. Pada CIDR (Classless Interdomain Routing) table routing diperkecil dengan menggabungkan jadi satu informasi routing dari sebuah organisasi.
I. Transisi IPv6
Untuk mengatasi kendala perbedaan antara IPv4 dan IPv6 serta menjamin terselenggaranya komunikasi antara pengguna IPv4 dan pengguna IPv6, maka dibuat suatu metode Hosts – dual stack serta Networks – Tunneling pada perangkat jaringan, misalnya router dan server .
Jadi setiap router menerima suatu paket, maka router akan memilah paket tersebut untuk menentukan protokol yang digunakan, kemudian router tersebut akan meneruskan ke layer diatasnya.
J. Contoh Infrastruktur IPv6
IPv4 yang merupakan pondasi dari Internet telah hampir mendekati
batas akhir dari kemampuannya, dan IPv6 yang merupakan
protokol baru telah dirancang untuk dapat menggantikan
fungsi IPv4. Motivasi utama untuk mengganti IPv4 adalah karena
keterbatasan dari panjang addressnya yang hanya 32 bit saja serta tidak
mampu mendukung kebutuhan akan komunikasi yang aman, routing yang
fleksibel maupun pengaturan lalu lintas data. Keunggulan
IPv6 dibandingkan dengan IPv4 diantaranya yaitu setting
otomatis stateless dan statefull. Kemudian, dasar migrasi
perubahan dari Ipv4 ke Ipv6 diantaranya kapasitas perluasan
alamat, penyederhanaan format header, option dan extension header,
kemampuan pelabelan aliran paket serta autentifikasi dan
kemampuan privasi. Untuk mengatasi kendala perbedaan
antara IPv4 dan IPv6 serta menjamin terselenggaranya
komunikasi antara pengguna IPv4 dan pengguna IPv6, maka dibuat suatu
metode Hosts – dual stack serta Networks – Tunneling pada hardware
jaringan, misalnya router dan server .
REFRENSI
0 komentar:
Posting Komentar